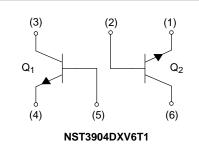
Dual General Purpose Transistor

The NST3904DXV6T1G device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-563 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.

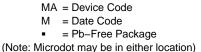
Features

- h_{FE}, 100–300
- Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- AEC–Q101 Qualified and PPAP Capable NSVT3904DXV6T1G, SNST3904DXV6T5G
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These are Pb–Free Devices

MAXIMUM RATINGS


Rating		Symbol	Value	Unit
Collector-Emitter Voltage		V _{CEO}	40	Vdc
Collector-Base Voltage		V _{CBO}	60	Vdc
Emitter-Base Voltage		V _{EBO}	6.0	Vdc
Collector Current – Continuous		Ι _C	200	mAdc
Electrostatic Discharge	HBM MM	ESD	>16000 >2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

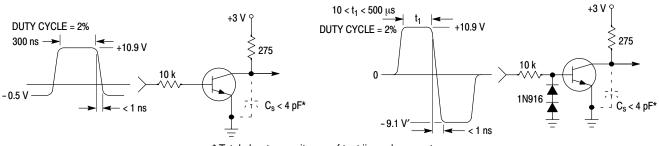
www.onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
NST3904DXV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel
NSVT3904DXV6T1G	SOT–563 (Pb–Free)	4000/Tape & Reel
NST3904DXV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel
SNST3904DXV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS


Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C (Note 1)	P _D	357 2.9	mW mW/°C
Thermal Resistance Junction-to-Ambient (Note 1)	R _{θJA}	350	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C (Note 1)	PD	500 4.0	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{ hetaJA}$	250	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. FR-4 @ Minimum Pad

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					•
Collector – Emitter Breakdown Vo	bltage (Note 2) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	40	-	Vdc
Collector – Base Breakdown Volt	V _{(BR)CBO}	60	-	Vdc	
Emitter-Base Breakdown Voltag	ge (I _E = 10 μAdc, I _C = 0)	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 30 V	I _{BL}	_	50	nAdc	
Collector Cutoff Current ($V_{CE} = 3$	30 Vdc, V _{EB} = 3.0 Vdc)	I _{CEX}	_	50	nAdc
ON CHARACTERISTICS (Note	2)				•
$ DC Current Gain \\ (I_C = 0.1 mAdc, V_{CE} = 1.0 Vc \\ (I_C = 1.0 mAdc, V_{CE} = 1.0 Vc \\ (I_C = 10 mAdc, V_{CE} = 1.0 Vd \\ (I_C = 50 mAdc, V_{CE} = 1.0 Vd \\ (I_C = 100 mAdc, V_{CE} = 1$	lc) c) c)	h _{FE}	40 70 100 60 30	 300 	_
	c)	V _{CE(sat)}		0.2 0.3	Vdc
$\begin{array}{l} \text{Base}-\text{Emitter Saturation Voltage} \\ (I_C=10 \text{ mAdc}, I_B=1.0 \text{ mAdc}) \\ (I_C=50 \text{ mAdc}, I_B=5.0 \text{ mAdc}) \end{array}$		V _{BE(sat)}	0.65 -	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTER	ISTICS				
Current-Gain - Bandwidth Proc	luct ($I_C = 10 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, f = 100 MHz)	f _T	300	-	MHz
Output Capacitance (V _{CB} = 5.0 V	Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	-	4.0	pF
Input Capacitance (V _{EB} = 0.5 Vc	dc, I _C = 0, f = 1.0 MHz)	C _{ibo}	-	8.0	pF
Input Impedance (V _{CE} = 10 Vdc,	l _C = 1.0 mAdc, f = 1.0 kHz)	h _{ie}	1.0 2.0	10 12	kΩ
Voltage Feedback Ratio ($V_{CE} =$	10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	h _{re}	0.5 0.1	8.0 10	X 10 ⁻⁷
Small-Signal Current Gain (V _{CE}	h _{fe}	100 100	400 400	-	
Output Admittance (V _{CE} = 10 Vc	h _{oe}	1.0 3.0	40 60	μmho	
Noise Figure (V _{CE} = 5.0 Vdc, I _C	= 100 μAdc, R _S = 1.0 k Ω, f = 1.0 kHz)	NF		5.0 4.0	dB
SWITCHING CHARACTERISTIC	CS	1		I.	1
Delay Time	$(V_{22} = 3.0)$ Vdc $V_{22} = -0.5$ Vdc)	t.		35	

Delay Time $(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$ 35 td _ ns 35 **Rise Time** $(I_{C} = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$ t_r _ Storage Time $(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$ t_s _ 200 ns Fall Time $(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$ 50 t_f _

2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

- T_J = 25°C _ T_J = 125°C 10 500 ПП $I_C/I_B = 10$ 300 7.0 200 CAPACITANCE (pF) 20 0°5 0°5 00 0°5 100 70 t_r @ V_{CC} = 3.0 V TIME (ns) Cibo 50 30 40 V $\mathbf{C}_{\mathrm{obo}}$ 2.0 20 15 V 10 2.0 V 7 $t_{d} @ V_{OB} = 0 V$ 1.0 5 30 50 70 100 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 40 1.0 2.0 3.0 5.0 7.0 10 20 200 **REVERSE BIAS VOLTAGE (VOLTS)** IC, COLLECTOR CURRENT (mA) Figure 4. Turn-On Time Figure 3. Capacitance 500 500 ТП $V_{CC} = 40 V$ $V_{CC} = 40 V$ 300 300 $I_{\rm C}/I_{\rm B}=10$ $I_{B1} = I_{B2}$ 200 200 11 $I_{\rm C}/I_{\rm B}=20$ - 1 t_f, FALL TIME (ns) 100 100 t_r, RISE TIME (ns) 70 70 50 50 Т $I_C/I_B = 10$ 30 30 20 20 10 10 7 7 5 5 1.0 2.0 3.0 5.0 7.0 10 30 50 70 100 200 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 20 I_C, COLLECTOR CURRENT (mA) I_C, COLLECTOR CURRENT (mA)

TYPICAL TRANSIENT CHARACTERISTICS

Figure 5. Rise Time

Figure 6. Fall Time

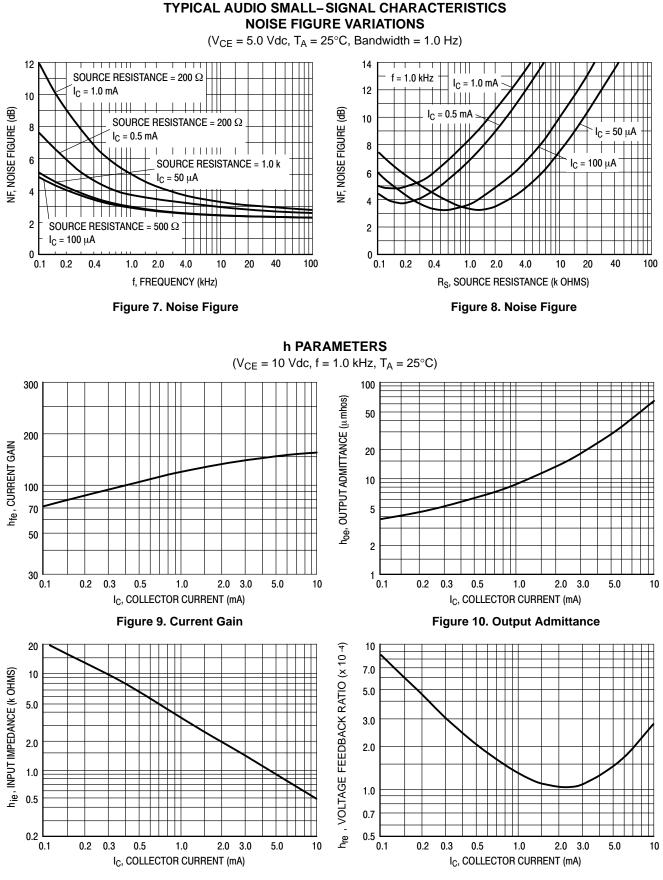
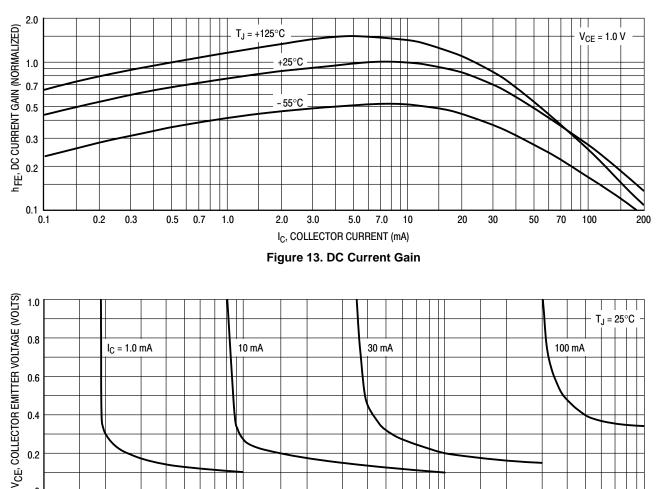



Figure 11. Input Impedance

Figure 12. Voltage Feedback Ratio

0.2

0.3

IB, BASE CURRENT (mA) Figure 14. Collector Saturation Region

0.5

0.7

1.0

2.0

3.0

5.0

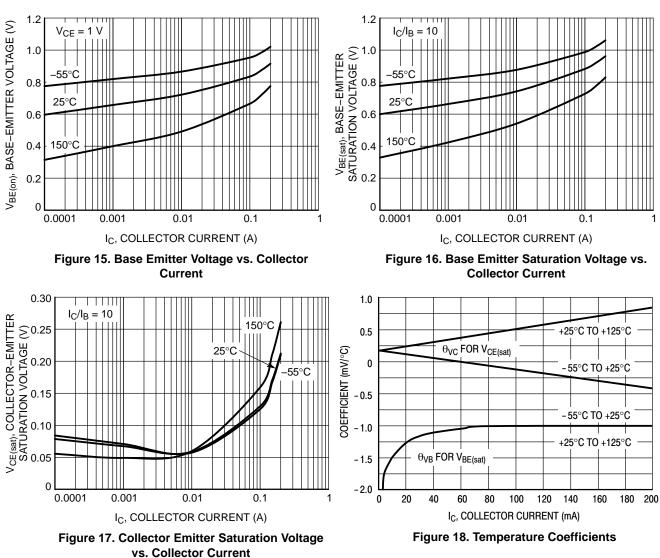
7.0

10

0.4

0.2

0.01


0.02

0.03

0.05

0.07 0.1

TYPICAL STATIC CHARACTERISTICS

TYPICAL STATIC CHARACTERISTICS

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A **ISSUE F**

NOTES

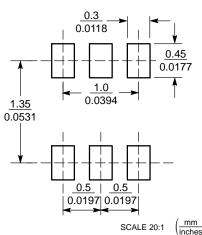
1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS

3.

MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.021	0.023	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.12	0.18	0.003	0.005	0.007	
D	1.50	1.60	1.70	0.059	0.062	0.066	
E	1.10	1.20	1.30	0.043	0.047	0.051	
е		0.5 BSC			0.02 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.50	1.60	1.70	0.059	0.062	0.066	


STYLE 1: PIN 1. EMITTER 1

2. BASE 1 3. COLLECTOR 2

4. EMITTER 2

5 BASE 2 COLLECTOR 1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

-X-5 2 O 1 3 b 6 PL С е \oplus 0.08 (0.003) 🔘 X | Y

D